

COMPLEXITY ISSUES

BARNEY MACCABE

COMPUTER SCIENCE DEPARTMENT

&

CENTER FOR HIGH PERFORMANCE COMPUTING

THE CENTER FOR HIGH PERFORMANCE COMPUTING

Bandwidth

- In the next decade is the bandwidth transferred into or out of one "high end computing file system"
 - a. going down 10X or more,
 - b. staying about the same,
- c. going up 10X or more, or
 - d. "your answer here,"
 - as a result of the expected increase in computational speed in its client clusters/MPPs, and why?

Increased Compute Rate...

.... is **not** the only reason for the increased bandwidth requirement

- External sources/sinks will also create and consume data at a higher rate
- Growth rate of aggregate MPP memory

Aggregate Memory Growth

Spindle Count

In the next decade is the number of magnetic disks in one "high end computing file system"

c. going up 10X or more, or as a result of the expected increase in computational speed in its client clusters/MPPs, and why?

It's unlikely that increases in disk density will be able to keep up with the increased demand for storage

Others

- Concurrency: the number of concurrent streams of requests is likely to increase by at least 10x
 - more systems, more users, more remote access, ...
- Seek Efficiency: I have no clue how the number of bytes moved per magnetic disk seek will change
- Failures: the number of independent failure domains may increase by 10x we don't tolerate failures very well.

Complexity

Explain why these large increases are not going to increase the complexity of storage software significantly.

HPC@UNM

Make the user deal with it

Development Time Trends

- Even if complexity is increasing, the time and effort required to achieve acceptable 9s of availability at speed MUST stay about the same.
- Are you relying on the development of any currently insufficient technologies, and if so, which?
 - * magic?

The temptation

- Fat layers provide opportunities for optimization
 - ** they also provide lots of opportunities to do the wrong thing
- Fat layers are magic-magic is (mostly) OK on my laptop...
- Getting to fat layers requires a lot of experience

The obligatory FI analogy

Shifting gears

Falcon F1

Heal & toe skill

Synchromesh Automatic Transmission Automatic Clutch enhancement

- ** Wired Magazine; March 2001
 - 220 MPH, 17,000 RPM, 500,000 lines of code

Performance Transparency

- When performance matters, the API should accurately reflect resource costs
 - FORTRAN reflects costs of the (an?) underlying architecture
 - MPI reflects costs of memory distribution
 - It's hard to encourage people to do the right thing-MPI does not encourage people to overlap communication with computation

Let users see through and discard layers

Coping with complexity

Butler Lampson (Software 1, 1), simplicity:

Perfection is reached, not when there is no longer anything to add, but when there is no longer anything to take away.

A. Saint-Exupery

- Make it fast, rather than general or powerful
- Don't hide power
- Leave it to the client

Abstracting storage

- You can't fix latency, you have to tolerate it
 - asynchronous interface (split transactions)
 - # find something else to do
- # I/O Bandwidth needs to be manageable
 - expose parallelism
 - eliminate need for anything other than data movement and access control
 - provide mechanisms to do everything else "offline"
- Mask failures

LWFS

Why Data isn't Compute

- Persistence
 - rebooting the storage system won't clean it up
- **Sharing**
 - performance isolation is much harder-you can't space share the storage servers
- ****** Interdependencies
 - management requires the construction of global views